NAG Toolbox for MATLAB

f08wb

1 Purpose

f08wb computes for a pair of n by n real nonsymmetric matrices (A,B) the generalized eigenvalues and, optionally, the left and/or right generalized eigenvectors using the QZ algorithm.

Optionally it also computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors, reciprocal condition numbers for the eigenvalues, and reciprocal condition numbers for the right eigenvectors.

2 Syntax

[a, b, alphar, alphai, beta, vl, vr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde, rcondv, info] = f08wb(balanc, jobvl, jobvr, sense, a, b, 'n', n)

3 Description

A generalized eigenvalue for a pair of matrices (A, B) is a scalar λ or a ratio $\alpha/\beta = \lambda$, such that $A - \lambda B$ is singular. It is usually represented as the pair (α, β) , as there is a reasonable interpretation for $\beta = 0$, and even for both being zero.

The right eigenvector v_i corresponding to the eigenvalue λ_i of (A, B) satisfies

$$Av_i = \lambda_i Bv_i$$
.

The left eigenvector u_j corresponding to the eigenvalue λ_i of (A, B) satisfies

$$u_j^{\mathrm{H}} A = \lambda_j u_j^{\mathrm{H}} B.$$

where u_i^H is the conjugate-transpose of u_i .

All the eigenvalues and, if required, all the eigenvectors of the generalized eigenproblem $Ax = \lambda Bx$, where A and B are real, square matrices, are determined using the QZ algorithm. The QZ algorithm consists of four stages:

- (i) A is reduced to upper Hessenberg form and at the same time B is reduced to upper triangular form.
- (ii) A is further reduced to quasi-triangular form while the triangular form of B is maintained. This is the real generalized Schur form of the pair (A, B).
- (iii) The quasi-triangular form of A is reduced to triangular form and the eigenvalues extracted. This function does not actually produce the eigenvalues λ_j , but instead returns α_j and β_j such that

$$\lambda_j = \alpha_j/\beta_j, \quad j = 1, 2, \dots, n.$$

The division by β_j becomes your responsibility, since β_j may be zero, indicating an infinite eigenvalue. Pairs of complex eigenvalues occur with α_j/β_j and α_{j+1}/β_{j+1} complex conjugates, even though α_j and α_{j+1} are not conjugate.

(iv) If the eigenvectors are required they are obtained from the triangular matrices and then transformed back into the original co-ordinate system.

For details of the balancing option, see Section 3 of the document for f08wh.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D 1999 *LAPACK Users' Guide* (3rd Edition) SIAM, Philadelphia URL: http://www.netlib.org/lapack/lug

[NP3663/21] f08wb.1

f08wb NAG Toolbox Manual

Golub G H and Van Loan C F 1996 Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Wilkinson J H 1979 Kronecker's canonical form and the QZ algorithm Linear Algebra Appl. 28 285-303

5 Parameters

5.1 Compulsory Input Parameters

1: **balanc – string**

Specifies the balance option to be performed.

balanc = 'N'

Do not diagonally scale or permute.

balanc = 'P'

Permute only.

balanc = 'S'

Scale only.

balanc = 'B'

Both permute and scale.

Computed reciprocal condition numbers will be for the matrices after permuting and/or balancing. Permuting does not change condition numbers (in exact arithmetic), but balancing does. In the absence of other information, **balanc** = 'B' is recommended.

Constraint: balanc = 'N', 'P', 'S' or 'B'.

2: **jobvl** – **string**

If **jobvl** = 'N', do not compute the left generalized eigenvectors.

If **jobvl** = 'V', compute the left generalized eigenvectors.

Constraint: jobvl = 'N' or 'V'.

3: **jobvr – string**

If **jobvr** = 'N', do not compute the right generalized eigenvectors.

If jobvr = 'V', compute the right generalized eigenvectors.

Constraint: jobvr = 'N' or 'V'.

4: sense – string

Determines which reciprocal condition numbers are computed.

sense = 'N'

None are computed.

sense = 'E'

Computed for eigenvalues only.

sense = 'V'

Computed for eigenvectors only.

sense = 'B'

Computed for eigenvalues and eigenvectors.

Constraint: sense = 'N', 'E', 'V' or 'B'.

f08wb.2 [NP3663/21]

5: a(lda,*) - double array

The first dimension of the array \mathbf{a} must be at least $\max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The matrix A in the pair (A, B).

6: b(ldb,*) - double array

The first dimension of the array **b** must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The matrix B in the pair (A, B).

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The first dimension of the arrays **a**, **b** and the second dimension of the arrays **a**, **b**. (An error is raised if these dimensions are not equal.)

n, the order of the matrices A and B.

Constraint: $\mathbf{n} \geq 0$.

5.3 Input Parameters Omitted from the MATLAB Interface

lda, ldb, ldvl, ldvr, work, lwork, iwork, bwork

5.4 Output Parameters

1: a(lda,*) - double array

The first dimension of the array \mathbf{a} must be at least $\max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

a has been overwritten. If jobvl = 'V' or jobvr = 'V' or both, then A contains the first part of the real Schur form of the 'balanced' versions of the input A and B.

2: b(ldb,*) - double array

The first dimension of the array **b** must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

b has been overwritten.

3: alphar(*) - double array

Note: the dimension of the array **alphar** must be at least $max(1, \mathbf{n})$.

The element **alphar**(j) contains the real part of α_i .

4: alphai(*) - double array

Note: the dimension of the array **alphai** must be at least $max(1, \mathbf{n})$.

The element **alphai**(j) contains the imaginary part of α_i .

5: beta(*) - double array

Note: the dimension of the array **beta** must be at least $max(1, \mathbf{n})$.

 $(\mathbf{alphar}(j) + \mathbf{alphai}(j) \times i)/\mathbf{beta}(j)$, for $j = 1, \dots, \mathbf{n}$, will be the generalized eigenvalues.

[NP3663/21] f08wb.3

f08wb NAG Toolbox Manual

If **alphai**(j) is zero, then the jth eigenvalue is real; if positive, then the jth and (j + 1)st eigenvalues are a complex conjugate pair, with **alphai**(j + 1) negative.

Note: the quotients $\operatorname{alphar}(j)/\operatorname{beta}(j)$ and $\operatorname{alphai}(j)/\operatorname{beta}(j)$ may easily overflow or underflow, and $\operatorname{beta}(j)$ may even be zero. Thus, you should avoid naively computing the ratio α_j/β_j . However, $\max |\alpha_j|$ will always be less than and usually comparable with $\|\mathbf{a}\|_2$ in magnitude, and $\max |\beta_j|$ will always be less than and usually comparable with $\|\mathbf{b}\|_2$.

6: vl(ldvl,*) - double array

The first dimension, ldvl, of the array vl must satisfy

```
if jobvl = 'V', ldvl \ge max(1, n); ldvl \ge 1 otherwise.
```

The second dimension of the array must be at least $max(1, \mathbf{n})$ if $\mathbf{jobvl} = \mathbf{V}'$, and at least 1 otherwise

If jobvl = 'V', the left eigenvectors u_j are stored one after another in the columns of vl, in the same order as the corresponding eigenvalues.

If the *j*th eigenvalue is real, then $u_i = \mathbf{vl}(:,j)$, the *j*th column of \mathbf{vl} .

If the *j*th and (j+1)th eigenvalues form a complex conjugate pair, then $u_j = \mathbf{vl}(:,j) + i \times \mathbf{vl}(:,j+1)$ and $u(j+1) = \mathbf{vl}(:,j) - i \times \mathbf{vl}(:,j+1)$. Each eigenvector will be scaled so the largest component has |real part| + |imag. part| = 1.

If jobvl = 'N', vl is not referenced.

7: vr(ldvr,*) - double array

The first dimension, ldvr, of the array vr must satisfy

```
if jobvr = 'V', ldvr \ge max(1, n); ldvr \ge 1 otherwise.
```

The second dimension of the array must be at least $max(1, \mathbf{n})$ if $\mathbf{jobvr} = 'V'$, and at least 1 otherwise

If **jobvr** = 'V', the right eigenvectors v_j are stored one after another in the columns of **vr**, in the same order as their eigenvalues.

If the jth eigenvalue is real, then $v(j) = \mathbf{vr}(:,j)$, the jth column of VR.

If the *j*th and (j+1)th eigenvalues form a complex conjugate pair, then $v_j = \mathbf{vr}(:,j) + i \times \mathbf{vr}(:,j+1)$ and $v_{j+1} = \mathbf{vr}(:,j) - i \times \mathbf{vr}(:,j+1)$.

Each eigenvector will be scaled so the largest component has |real part| + |imag. part| = 1.

If jobvr = 'N', vr is not referenced.

- 8: ilo int32 scalar
- 9: ihi int32 scalar

ilo and **ihi** are integer values such that $\mathbf{a}(i,j) = 0$ and $\mathbf{b}(i,j) = 0$ if i > j and $j = 1, \dots, \mathbf{ilo} - 1$ or $i = \mathbf{ihi} + 1, \dots, \mathbf{n}$.

If **balanc** = 'N' or 'S', **ilo** = 1 and **ihi** = **n**.

10: lscale(*) - double array

Note: the dimension of the array **Iscale** must be at least $max(1, \mathbf{n})$.

Details of the permutations and scaling factors applied to the left side of A and B.

If pl_j is the index of the row interchanged with row j, and dl_j is the scaling factor applied to row j, then:

f08wb.4 [NP3663/21]

$$\begin{aligned} & \mathbf{lscale}(j) = pl_j, \text{ for } j = 1, \dots, \mathbf{ilo} - 1; \\ & \mathbf{lscale} = dl_j, \text{ for } j = \mathbf{ilo}, \dots, \mathbf{ihi}; \\ & \mathbf{lscale} = pl_j, \text{ for } j = \mathbf{ihi} + 1, \dots, \mathbf{n}. \end{aligned}$$

The order in which the interchanges are made is **n** to ihi + 1, then 1 to ilo - 1.

11: rscale(*) - double array

Note: the dimension of the array **rscale** must be at least $max(1, \mathbf{n})$.

Details of the permutations and scaling factors applied to the right side of A and B.

If pr_j is the index of the column interchanged with column j, and dr_j is the scaling factor applied to column j, then:

```
rscale(j) = pr_j, for j = 1, ..., ilo - 1; if rscale = dr_j, for j = ilo, ..., ihi; if rscale = pr_j, for j = ihi + 1, ..., n.
```

The order in which the interchanges are made is **n** to ihi + 1, then 1 to ilo - 1.

12: abnrm – double scalar

The 1-norm of the balanced matrix A.

13: **bbnrm – double scalar**

The 1-norm of the balanced matrix B.

14: rconde(*) - double array

Note: the dimension of the array **recorde** must be at least $max(1, \mathbf{n})$.

If sense = 'E' or 'B', the reciprocal condition numbers of the eigenvalues, stored in consecutive elements of the array. For a complex conjugate pair of eigenvalues two consecutive elements of **rconde** are set to the same value. Thus $\mathbf{rconde}(j)$, $\mathbf{rcondv}(j)$, and the *j*th columns of **vl** and **vr** all correspond to the *j*th eigenpair.

If **sense** = 'V', **rconde** is not referenced.

15: rcondv(*) - double array

Note: the dimension of the array **rcondv** must be at least $max(1, \mathbf{n})$.

If **sense** = 'V' or 'B', the estimated reciprocal condition numbers of the eigenvectors, stored in consecutive elements of the array. For a complex eigenvector two consecutive elements of **rcondv** are set to the same value.

If **sense** = 'E', **rcondv** is not referenced.

16: info – int32 scalar

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

```
info = -i
```

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: balanc, 2: jobvl, 3: jobvr, 4: sense, 5: n, 6: a, 7: lda, 8: b, 9: ldb, 10: alphar, 11: alphai, 12: beta, 13: vl, 14: ldvl, 15: vr, 16: ldvr, 17: ilo, 18: ihi, 19: lscale, 20: rscale, 21: abnrm, 22: bbnrm, 23: rconde, 24: rcondv, 25: work, 26: lwork, 27: iwork, 28: bwork, 29: info.

[NP3663/21] f08wb.5

f08wb NAG Toolbox Manual

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

```
info = 1 to N
```

The QZ iteration failed. No eigenvectors have been calculated, but $\mathbf{alphar}(j)$, $\mathbf{alphai}(j)$, and $\mathbf{beta}(j)$ should be correct for $j = \mathbf{info} + 1, \dots, \mathbf{n}$.

info = N + 1

Unexpected error returned from f08xe.

info = N+2

Error returned from f08yk.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrices (A + E) and (B + F), where

$$||(E,F)||_F = O(\epsilon)||(A,B)||_F$$

and ϵ is the *machine precision*.

An approximate error bound on the chordal distance between the *i*th computed generalized eigenvalue w and the corresponding exact eigenvalue λ is

$$\epsilon \times \|\mathbf{abnrm}, \mathbf{bbnrm}\|_2 / \mathbf{rconde}(i)$$
.

An approximate error bound for the angle between the *i*th computed eigenvector $\mathbf{vl}(i)$ or $\mathbf{vr}(i)$ is given by

$$\epsilon \times \|\mathbf{abnrm}, \mathbf{bbnrm}\|_2 / \mathbf{rcondv}(i)$$
.

For further explanation of the reciprocal condition numbers **rconde** and **rcondv**, see Section 4.11 of Anderson *et al.* 1999.

Note: interpretation of results obtained with the QZ algorithm often requires a clear understanding of the effects of small changes in the original data. These effects are reviewed in Wilkinson 1979, in relation to the significance of small values of α_j and β_j . It should be noted that if α_j and β_j are **both** small for any j, it may be that no reliance can be placed on **any** of the computed eigenvalues $\lambda_i = \alpha_i/\beta_i$. You are recommended to study Wilkinson 1979 and, if in difficulty, to seek expert advice on determining the sensitivity of the eigenvalues to perturbations in the data.

8 Further Comments

The total number of floating-point operations is proportional to n^3 .

The complex analogue of this function is f08wp.

9 Example

```
balanc = 'Balance';
jobvl = 'No vectors (left)';
jobvr = 'Vectors (right)';
sense = 'Both reciprocal condition numbers';
a = [3.9, 12.5, -34.5, -0.5;
    4.3, 21.5, -47.5, 7.5;
    4.3, 21.5, -43.5, 3.5;
    4.4, 26, -46, 6];
b = [1, 2, -3, 1;
    1, 3, -5, 4;
    1, 3, -4, 3;
    1, 3, -4, 4];
```

f08wb.6 [NP3663/21]

```
[aOut, bOut, alphar, alphai, beta, vl, vr, ilo, ihi, lscale, rscale, ...
 abnrm, bbnrm, rconde, rcondv, info] = ...
    f08wb(balanc, jobvl, jobvr, sense, a, b)
aOut =
                                9.2824
4.4114
2.4373
            -9.6500
                      6.6759
0.7369
    3.2224
            0.2275
         0
             -0.2267
                       0.2253
         0
                 0
                                2.8425
bOut =
            0.7761
0.1849
    1.6112
                                  6.1473
       0
                                  1.8929
                 0 0.0472
                                0.8504
         0
                   0
                        0
                                 0.7106
alphar =
    3.2224
    0.3880
    0.2026
    2.8425
alphai =
    0.5173
   -0.2701
beta =
    1.6112
    0.1293
    0.0675
    0.7106
v1 =
vr =
           -0.4255 -0.5745
-0.0851 -0.1149
   -1.0000
                                 -1.0000
                                -0.0111
   -0.0057
   -0.0629 -0.1430 -0.0009 0.0333
   -0.0629
           -0.1430 -0.0009 -0.1556
ilo =
           1
ihi =
lscale =
     1
     1
     1
     1
rscale =
    1.0000
    0.1000
    0.1000
    1.0000
abnrm =
   17.5000
bbnrm =
   12
rconde =
    0.0952
    0.1652
    0.1652
    0.5141
rcondv =
    0.1254
    0.0381
    0.0381
    0.0707
info =
```

[NP3663/21] f08wb.7 (last)